HDF5 Single-Writer/Multiple-Reader Feature Design
and Semantics

The HDF Group

Document Version 5.2

This document describes the design and semantics of HDF5’s single-writer/multiple-
reader (SWMR) feature. This feature allows multiple reader processes to inspect a file

that is concurrently being written to by a single writer process without requiring any
inter-process communication.

The HDF Group

http://www.HDFGroup.org

Copyright 2013 by The HDF Group.

All rights reserved.

This document is part of HDF5. For HDF5 copyright and license information, see this page on The HDF
Group website: http://www.hdfgroup.org/HDF5/doc/Copyright.html.

l-w Page 2 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Contents

Contents
O [0 i oo [0 o3 NP U PP UURTOTPPPRRE 4
P N g LIV S e o] o] =T o o PSPPI 5
3. SWIMR SEMANTICS ..eeeiieiiiiiiiitieie ettt ettt e st e e e s e s e et et e e s s e aaa e e e e e e e s e saamrebeeeeeesesannneneeeeees srneens 6
Y ole] o Y=IF- [a o N X[y o1 =1 o] o 30PN 7
4.1, Datatype LiIMITations ..o 7
By I 0o o oY= | o 11 L1 Y2 PP 8
4.3, 1/0 STACK FEQUIFEIMENTS ...eeiiiiiciieeciee ettt ettt e et e et e e et e e e bee e teeestbeesabeeeabeeebaeessbessateeetesesseesnseesseenn 8
/B Yo [[o) o F=1 o) { TSR UPRPRRUPS 9
5. Metadata Cache FIUSh DEPENUENCIES.....ccccuuiiiiiiiie ettt et e e ae e e s sra e e e s araeessanneee s 10
LT R - =T 4 o TU T o [TSP 10
T U [o oTo 1 OO T PO PP P PP PP PPPPPPPPPPN 10
T T 0] o =T -} { o] s OO OO ROO PO PP O PP PP PP P PPPPPPPR 10
LR = 1 Yo LSRR 11
LTI [g o1 [T 0 4 =T o = 4 Lo o SR ERRROt 11
oI B) - 1= PP UPUPUPPP N 12
S 0[] 0 e =TSSP 13
8. ChunK INdeX: B-Tree (VEISION 1) ..ueeiiiiiieieeiiiie ettt ettt e ettt e ettt e e e te e e e e etteeeeeateeeeeasseeesssaeaeenssaeesannreaean 14
8.1 OVEIVIEW ..eiiiiieieett e ettt e e e ettt et e e e e e bttt e e e e e s e nebe e teeeeeeaanb b e eeaee e e ansbeeeeeeeeaannsbeneeeeean seeeaaesann 14
I N Lo T = o o I o 1T = Lo o NP UEPPRt 14
8.3. Cache Objects, References, and Flush DEPENAENCIESc..eeieeuiiiiiiiiiiee et 15
9. ChunK INdeX: B-TrEe (VEISION 2) ..vveieiiiieeeeiiieeeeiiee e ettt e e ettt e e eette e e ettt e e e e tteeeesasteeeesasseeessseeesanseeeesansenaean 17
1S 00 O ¥ o Yo S SPPPPPPP 17
I I 1Yo TV - [0 T @ o YT = o o[PS URRSPNE 17
9.3. Cache Objects, References, and Flush DEPENdENCIEScccueevviiriiiirieinieeeee e 19
10. Chunk Index: EXEENSIDIE AFTAY ..cccvvieiiiiee ettt et e e et e e e e aae e e e et ae e e eataeeeensteeeeeabaeeeennenas 21
L0, L. PUIPOSE weeetviiiiiiiiiiiiitieieeeeeeeeeteteeeeeteteteteteteteteeeteteeeeeseeeeasesaeasesesesesesesesssesssssssssssssssssssssssssssssss sasssnenens 21
10.2. Layout and OPErationccccueeiiiciiieiiiieesiiteeeestte e s st e e e stre e e e sbreeeesabaeesenasaeeesssteeesnnseeeeenteeesasses 21
O B G- Y YT - I @] o T o PSRN 22
10.2.2. OPLIMIZATIONS cevvtiiiiiiiiiiiiiiiiiiieeeereeeeeee ettt eeee ettt eeeeeeeeeeteeeseteeeeaeeeeeaeseaaaeeeeeseseeaeeasaseseeseenns 22
10.3. Cache Obijects, References, and Flush DEPENdENCIESccceeeeurrieieeeeiiiiiirieee et 23
11, ChUuNK INAEX: FIXEA AITAY ciiiivieeeiiiiie e ccieee ettt eeite e s sttt e e e etee e e s eatee e s sbteeessabaeesessaeeesaseaeassnseeeesnsseeessnsens 25
I R] T 1] = PO TP PPO PP PPPRNt 25
3 A I (VLo UL =T [o @] o1=] - | Lo ISP 25
11.3. Cache Objects, References, and Flush DEpendenciesccccuvriieeeeeiccciiiieee e 26
12, REVISION HISTOMY eiiitiiee ettt ettt e ettt e e e e ettt e e e e e e s bbbt e e e e e s e s aabeeeeeeeeesanbsbeeeeeesannnne aeenn 28

'-F Page 3 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Introduction

1. Introduction

This document describes the design and semantics of HDF5’s single-writer/multiple-reader (SWMR)
feature. This feature will add support to the HDF5 C Library that will allow multiple reader processes to
inspect a file that is concurrently being written to by a single writer process without requiring any inter-
process communication ("SWMR semantics").

The intended audience for this document is anyone who needs a broad overview of how the SWMR
feature will work. This could range from new library developers and test engineers, who need to quickly
get up to speed on SWMR, to project managers and customers, who need to get a handle on the
complexity of the feature.

The document begins with a description of the problem, continues with an overview of the limitations of
the feature at this time, moves next to a general solution to the SWMR problem, and finally concludes
with a description of the layout, behavior, and potential SWMR issues of the data structures that are
needed to support the initial implementation of SWMR in HDF5 1.10.

The level of detail is "mid-level"; somewhere between a high-level description and a low-level
implementation plan. The former risks being too glib to really give a good picture of the complicated
processing required by the SWMR feature and the technical challenges that must be overcome. The
latter would include too much detail that would risk obscuring the overall ideas behind our solutions to
the SWMR problem.

'-w Page 4 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics The SWMR Problem

2. The SWMR Problem

Without using file locking or centralized control of read and write operations, it is not possible with 1.8.x
versions of the HDF5 Library to safely read and write concurrently to or from an HDF5 file from multiple
processes. The reason for this is that an HDF5 file is not a simple binary file. An HDF5 file utilizes
complicated data structures for internal indexing and data organization. When created or modified,
these HDF5 data and file objects are cached and subsequently flushed to disk. A modified LRU algorithm
is used to define the order in which the objects are written to disk. In a single-process situation, the
combination of the written-out file objects and the in-memory state of the process provide a consistent
and complete picture of the HDF5 file. When a second process opens such a partially-flushed file, it will
be missing the un-flushed in-memory state of the first (writer) process. If the reader encounters a file
object that stores an offset to another, un-flushed, file object, this would result in either returning
garbage data to the reader or attempting to construct an HDF5 file object from garbage, which would
most likely crash the reader. This is a limitation, not just of HDF5, but of any file format that is internally
more complicated than a simple bucket of bytes.

The general solution to this problem is to modify the writer's metadata cache and file data structure
code to ensure that metadata that is referred to by another metadata object is flushed from the cache
first. This ensures that a reader will never attempt to resolve an invalid offset. The parent-child
relationship between the metadata objects is called a flush dependency and is described in more detail
below.

'-w Page 5 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics SWMR Semantics

3. SWMR Semantics

The semantics of SWMR operations are:

e Multiple readers can open the same file for reading when no writer has the file open for writing.

e No reader can open the file for reading when a non-SWMR writer is accessing the same file for
writing.

e No writer can open the file for writing when reader(s) are accessing the same file for reading.

e No writer can open the file for writing when a writer already holds the file open for writing.

e Multiple readers can open the same file for “reading and SWMR-read” when a writer opens the
file for “writing and SWMR-write”.

e Non-SWMR readers will not be able to open a file opened for SWMR writing.

Note that these policies are not yet enforced by the HDF5 Library at this time.

'-w Page 6 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Scope and Limitations

4. Scope and Limitations

Due to the complexity of the SWMR feature and the technical challenges involved in the
implementation, development is proceeding in several phases. The project is currently on Phase |, in
which the only allowed operation is appending to previously created datasets. Phase | also has a few
other characteristics, some of which are elaborated on later in this section:

e Variable-length and region reference datatypes are not supported.

e HDFS5 file and reader process consistency are a major consideration.

e Write throughput should not be significantly affected by SWMR.

e Read performance and reader/writer latency are less of a concern and will be optimized in a
later phase.

Phase | is intended to be a demonstration of the SWMR concept and a test bed for future development.
A platform-independent, concurrent testing and debugging harness will also be created as a part of the
work of this phase. The content of future phases is out of scope for this document, but the general idea
is to extend SWMR operations to object creation and then object rename and deletion.

4.1. Datatype Limitations

Some HDF5 datatypes will not be supported in the initial SWMR prototype due to missing flush
dependencies that could cause errors in reader processes. These unsupported datatypes are mentioned
here since their non-trivial storage would require interaction between the dataset's file objects and
other HDFS5 file objects. All other HDF5 datatypes - compound, array, enumeration, and fixed-length
strings - are simply stored as contiguous bytes in the dataset, and there are no interactions with other
objects in the file. The non-supported datatypes are described in the table below.

'-w Page 7 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Scope and Limitations

Table 1. Datatypes not supported in SWMR phase 1

Variable-length types A dataset of a variable-length type stores offsets into a global
heap where the actual data is contained. Flush dependencies
between the chunk proxies and the global heap have not been
implemented at this time. When this is implemented, the global
heap will have to be flushed before the chunk proxy. See the
“Chunk Proxies” section on page 13 for more information.

Region references A dataset of region reference type stores offsets into a heap
where the actual data is contained. Flush dependencies between
the chunk proxies and the global heap have not been
implemented at this time. When this is implemented, the global
heap will have to be flushed before the chunk proxy. The
problem of ensuring that the referred-to region in chunked
datasets is flushed to the disk before the region will also need to
be addressed with some form of flush dependency.

Object references are supported as long as the objects exist
before SWMR operations begin. No new objects can be created
under SWMR operations in the current implementation.

4.2. Compatibility

Files created under SWMR will not be compatible with versions of HDF5 before 1.10.0. This means that
applications linked with the HDF5 library version 1.8.x will not be able to access data written by a SWMR
writer. This is because metadata cache objects must contain a checksum field so that readers can ignore
torn writes (defined below). In HDF5 1.8.x and earlier, the only available chunk index is a version 1 B-
tree which does not store a checksum field. Efficient SWMR operations may also require improved
chunk index structures and superblock extensions that are not present in HDF5 1.8.

The lack of a checksum could potentially be ameliorated in a somewhat hacky way by appending a
checksum to the B-tree nodes under SWMR writing since a reader using HDF5 1.8 would not notice the
checksum. This feature would contain a lot of caveats and sharp edges, though, and should probably not
be implemented unless 1.8 compatibility without a repack step were a strong requirement of SWMR.

4.3. 1/0 stack requirements

For SWMR to work properly, the 1/0 stack on the system where the writer resides, from the write API
call to the storage medium, must provide two guarantees:

e Ordering: Write operation ordering must be preserved.

'-w Page 8 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Scope and Limitations

If this were not preserved, the flush dependency logic could be overridden and metadata
objects could be written to the file out of order.

e Atomicity: Write operations should be atomic at the write function call level.

The HDFS5 library writes all HDF5 metadata objects out using a single write call. If write
atomicity were not preserved, incompletely written file objects could be encountered by a
reader. A read that encounters both old and new data due to broken atomicity is called a torn
write.

The entire 1/0O stack must be considered when determining whether ordering and atomicity are
guaranteed since caching and other optimizations that break these characteristics can occur at any level.

Unfortunately, many 1/0 stacks will fail one or both of these requirements. For example, the Linux
kernel is only atomic at the page level with respect to writes so most file systems fail the atomicity
requirement on that operating system. Also, the caching layer can break ordering on many network file
systems.

To mitigate this, the HDF5 Library will use the file object's checksum field to ensure that a valid file
object has been read from the disk. When the checksum does not correctly reflect the data read from
the disk, the library will retry the read for a user-adjustable number of times before reporting failure.
This will mitigate both the ordering and atomicity problems.

Additionally, the metadata cache is being modified so that it will report failures if an attempt is made to
write a non-checksummed file object to disk while under SWMR semantics. At this time, this is only
implemented for the version 1 B-tree (used in HDF5 1.8 groups and chunk indexes).

4.4. Additional Notes

In the discussion of each data structure, delete operations are ignored since neither file object deletion
not dataset shrinkage will be supported in the first stage of the SWMR project.

In the B-tree discussion, standard B'-tree and B*-tree operations are not discussed in detail, as this
information is readily available in textbooks and on the web.

See the “HDFS5 File Format Specification” at http://www.hdfgroup.org/HDF5/doc/H5.format.html for
more information on the way the HDF5 Library uses B-trees.

The SWMR feature is intended to be a part of the future HDF5 1.10 release. SWMR functionality will not
be available in the 1.8 versions of HDF5 due to missing required file format changes and a SWMR-unsafe
chunk index data structure.

'-w Page 9 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Metadata Cache Flush Dependencies

5. Metadata Cache Flush Dependencies

5.1. Background

The metadata cache in the HDF5 Library is used to hold pieces of file format metadata that have been
recently accessed by the library. Each piece of metadata is stored as an entry in the metadata cache. The
cache attaches information about the entry’s type (B-tree node, heap block, for example), encoded
offset and length in the file, time of last access, and whether the metadata has been modified (in other
words, its “dirty” status) to each entry in the cache. Data structures in the file such as object headers, B-
trees, and heaps are composed of multiple pieces of file metadata, all of which are accessed through the
metadata cache interface within the library.

5.2. Purpose

For SWMR-safe file modifications to work correctly, metadata for each file data structure must be
written to the file in a particular order. The library code that manages each file data structure
determines which pieces of its metadata are affected, and the order that those pieces of metadata
should be written. To support the data structure management code, the metadata cache exposes
library-internal interfaces that enable the definition of a write-ordering between two entries in the
metadata cache. These write-orderings are called “flush dependencies” within the library.

5.3. Operation

When a flush dependency is created between two metadata cache entries, one entry is designated as
the “parent” entry and the other as the “child” entry. Multiple flush dependencies may be created for
each entry in the metadata cache (in other words, each parent entry may have multiple child entries),
and each cache entry can be a parent, a child, or both.

The principal function of a flush dependency between two cache entries is to define an ordering
between write operations of those entries. Parent entries that have been modified (aka dirty) may not
be written to the file until all of their child entries are clean. In other words, if a child entry is dirty, it
must be written to the file before its parent entry can be written to the file. Circular parent-child flush
dependencies are not allowed. If no flush dependency is defined between cache entries, then there is no
write ordering: either entry could be written first. Additionally, when a cache entry is a parent in a flush
dependency, it is pinned in the cache (it cannot be evicted) until all of its child entries have been written
to the file.

|.u: Page 10 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Metadata Cache Flush Dependencies

5.4. Example

Suppose there is a metadata cache with six entries (A-F) and several flush dependencies (arrows). See
the figure below.

.

Figure 1. Representative flush dependencies between metadata cache objects

Entry A is the parent of C, B is the parent of D, and C is the parent of both E and F. Dirty entries are
shaded (A-E), and clean entries are not shaded (F). With this configuration, A could not be written to the
file until Cis clean, and C could not be written to the file until both E and F are clean. Likewise, B could
not be written to the file until D was clean. So, with this configuration, when the metadata cache is
attempting to flush dirty entries to the file (perhaps when flushing all the metadata for the file), either
entries D and E could be written to the file first (making them clean), then entries B and C, and finally
entry A. If C was written before B, A would also be able to be flushed before B.

5.5. Implementation

The internal API routines to operate on flush dependencies are:

herr_t H5AC_create_flush_dependency(void *parent, void *child);
herr_t H5AC_destroy_flush_dependency(void *parent, void *child);

Each pointer parameter for the flush dependency calls is a pointer to a metadata cache entry, but the
type of each entry varies, so they are passed as void *. Once the dependency is set up, the relationship is
managed by the cache and persists until the child entry in the relationship is evicted from the cache or
until the relationship is explicitly destroyed.

l.u: Page 11 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Datasets

6. Datasets

Datasets in the HDFS5 file are, at the lowest level, represented by an object header that contains and/or
refers to internal metadata about the dataset and also points to the data either directly in contiguous or
compact datasets’, or via the chunk index in chunked datasets. Since the SWMR prototype is only
concerned with extendable datasets, which must be chunked, we ignore the simpler forms.

When appending to datasets, the only file data structures that are created or modified are the object
header, which stores dataset size information, and the index that the library uses to quickly locate a
particular chunk in the HDF5 file. There are four of these, shown in the table below.

Table 2. Chunk indexing data structures

Data Structure Version Usage

B-Tree (version1) 1.8,1.10 1.8: All chunk indexes.
1.10: All chunk indexes when 1.8 compatibility is in
effect (default!).

Note: This data structure will not be usable under
SWMR semantics due to a lack of checksums.

B-Tree (version 2) 1.10 Datasets with more than one unlimited dimension.
Extensible Array 1.10 Datasets will one unlimited dimension.
Fixed Array 1.10 Datasets with no unlimited dimensions.

The chunk index is where most of this version of SWMR's complexity lies since the indexes can have
fairly complicated internal structures with many flush dependencies. The index can be created lazily or
can have some initial structure set up at dataset creation time. When created lazily, no chunk index
storage is allocated until the first write to a dataset. On first write, the initial index storage is written out
to the disk and its offset in the file is written into the object header. For SWMR, this requires a flush
dependency between the "root" of the chunk index and the object header.

! Compact datasets actually store the data in the object header so "refer" is not technically correct.

|.u: Page 12 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Proxies

7. Chunk Proxies

Chunk proxies are metadata cache objects that represent chunks that are in the chunk cache (see
http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html for more information on
chunking). If SWMR writes are enabled, a chunk proxy is created in the metadata cache whenever a
chunk is created in the chunk cache. This proxy object acts as a cross-cache dependency between a
metadata cache object and a chunk cache object. Like any other flush dependency, this prevents the
parent such as a B-tree node from being written to disk before the child (chunk, via the proxy). Without
chunk proxies, metadata objects that refer to non-existent storage could be written to disk, potentially
causing errors in the readers.

|.g: Page 13 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: B-Tree (Version 1)

8. Chunk Index: B-Tree (Version 1)

Note that version 1 B-tree nodes are not suitable for use in SWMR writers since the nodes lack a stored
checksum field. Without a checksum field, a reader cannot check for torn writes. Torn writes can occur
on 1/0 stacks that are not atomic at the write call level®. This discussion is provided for the completeness
of the flush dependencies topic and in case compatibility with 1.8 becomes a requirement.

8.1. Overview

The data structure used with version 1 B-tree nodes is a relatively straightforward implementation of a
standard B*-tree data structure with the addition of sibling pointers to facilitate leaf traversals. In
addition to its use as a chunk index, this structure is also used as a symbol table (group) index. This data
structure has been available since the initial implementation of the library; it is the only available chunk
index in HDF5 1.8.x and will continue to be the default in the 1.10.x versions of the library for backward
compatibility.

8.2. Layout and Operation

A version 1 B-tree is implemented as a collection of identical nodes. Each node conceptually consists of
n values surrounded by n+1 keys>. The keys are (essentially) the coordinates of the element in the chunk
closest to the origin and the values are file offsets, pointing either to other B-tree nodes in internal
nodes or to chunks in leaf nodes. These values are associated with the key to the right. The leftmost key
in the node is interpreted as the 0™ chunk®. Each node also includes pointers to its left and right siblings
in the level®. These pointers are only followed during leaf-level iteration. However, this behavior has
been changed in current versions of the library, and the sibling pointers are no longer used. Sibling
pointers must be maintained for backward compatibility. Each node also stores a value that indicates its
level (leaves = 0, nodes on the level immediately above leaves = 1, and so on) as well as a few other
values that have no impact on SWMR operations. The detailed layout of a B-tree node is described in the
“HDFS5 File Format Specification” at http://www.hdfgroup.org/HDF5/doc/H5.format.html and is identical
in both the 1.8 and 1.10 versions of the library.

% As mentioned previously, many I/O stacks do not meet this criterion.

* 1 can be set by the user using the H5Pset_istore_k and H5Pset_sym_k API functions, for chunks and groups,
respectively. The default is currently 64 for chunk indexes (8 for symbol table indexes).

* This is historical. For the record, in symbol table indexes, the keys are heap IDs referring to link information in the
group's local heap (which uses the link names for comparisons) and leaf node values are symbol table entries. The
values are associated with the key on the left and the "extra" key on the right is interpreted as an ASCII NUL (\0)
character.

> The "undefined address" is stored in sibling pointers of nodes that are on the edge of the tree.

'.u: Page 14 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: B-Tree (Version 1)

B-tree nodes are created as needed when chunks are added to the dataset. When a node is not large
enough to contain a newly added value, it is split into two nodes at the same level and the links (and
possibly other splits) are propagated up the tree as far as needed. Nodes are allocated at their "full" size
so they do not have to be resized and possibly moved in the file as the number of key-value pairs they
contain grows. The depth of the tree only changes when the root node splits. When this happens, the
root node's values are copied into two new nodes, the root node's values are zeroed out, and the offsets
of the two new nodes are set as the first two values of the root node. This is done so that the root
node's offset never changes, and its offset in the object header never needs to be updated.

\Ir v l Nodes

< <> +
v v v
\ Elements

Figure 2. Version 1 B-tree structure
Note that not all child nodes are shown to keep the figure uncluttered.

8.3. Cache Objects, References, and Flush Dependencies

The version 1 B-tree is represented, both in the file and in the metadata cache, by a single type of cache
object and each node is a separate cache object.

The flush dependencies in a version 1 B-tree are straightforward as a flush dependency only exists
between each child node and its parent. In other words, the children must be flushed to the disk before
the updated parent node can be flushed. When a node splits, two new nodes are created, and both are
flushed before their common parent is flushed. Sibling pointers are not considered for flush
dependencies since the current implementation of the library does not use them.

l.u: Page 15 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: B-Tree (Version 1)

vlr v ,l, Nodes

. . 3 + .
3 x x x .

1 1 1 1
waned wuned wuwws wenesd

Chunk Proxies

Figure 3. Version 1 B-tree flush dependencies
Note that not all child nodes are shown to keep the figure uncluttered and that the base of the
arrow is the parent and the point is the child.

Table 3. Parent-->Child flush dependencies between version 1 B-tree objects in the
metadata cache

Parent Child Reason

Internal node Child node (internal or Tree values store node offsets.
leaf)

Leaf node Chunk proxy/symbol Tree values store the file offsets of chunks
table node or symbol table nodes.

l.u: Page 16 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: B-Tree (Version 2)

9. Chunk Index: B-Tree (Version 2)

9.1. Purpose

The version 2 B-tree is used in more contexts in the library than the version 1 B-tree. There are currently
around ten indexing uses for the version 2 B-tree, each with its own particular record type, but we only
consider its use as a chunk indexing structure here. Other contexts will be explored in later stages of the
SWMR project.

In the 1.10 version of the library, version 2 B-trees are used for indexing chunks in datasets with two or
more unlimited dimensions. The data structure is a relatively straightforward implementation of a
standard B*-tree data structure; since the structure stores the number of child records for each internal
node, it could technically be considered a "counted B-tree"®. Note that this differs from the version 1 B-
tree sub-type, as the version 2 implementation attempts to rebalance records in nodes. Also unlike the
version 1 B-trees, there are no sibling pointers to facilitate leaf traversals. The version 2 B-trees are not
used as a chunk index data structure in the 1.8 version of the library.

9.2. Layout and Operation

A version 2 B-tree has a slightly more complicated structure than its version 1 counterpart. A tree
consists of a header, a collection of internal nodes, and a collection of leaf nodes. Unlike the version 1
tree, records can be stored directly in an internal node. The records contained in the tree are also more
variable and complicated than the records stored in the version 1 B-trees, which reflects their more
varied use. Unlike the version 1 B-tree, the version 2 B-tree does not store separate keys and values.
Instead, nodes simply store records from which key information is extracted depending on usage. For
chunk indexing, the key part of the record is the chunk coordinates.

® http://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html

'.u: Page 17 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics

Chunk Index: B-Tree (Version 2)

!
Coim o

Elements

Internal Nodes

Leaf Nodes

Figure 4. Version 2 B-tree structure
Note that not all child nodes are shown to keep the figure uncluttered.

The differences between the two types of B-trees are illustrated in the table below.

Table 4. Differences between version 1 and 2 B-trees

Characteristic

Version 1

Version 2

B-tree sub-type

B*-tree

Counted B*-tree

Usage Chunk indexes Chunk indexes
Symbol table indexes Dense symbol table indexes
Dense attribute indexes
Fractal heap large object indexes
Components Nodes Header
Symbol table node (when used for Internal nodes
indexing links in a group) Leaf nodes
Keys Offsets of chunk in all dimensions Offsets of chunk in all dimensions
Values File offset of chunk data File offset of chunk data
Chunk size Chunk size (if filtered)
Filter mask Filter mask (if filtered)
Sibling node pointers? Yes No
Data stored in internal No Yes
nodes?
Records rebalanced on No Yes

inserts/deletes?

The header contains the offset of the root node, the total number of records in the root node and in the

tree, and some miscellaneous structural information.

Internal nodes contain some bookkeeping information and (conceptually) a collection of records
contained between child node pointers. See the figure below. The default number of records is 512.

HOF

The HDF Group

Page 18 of 28

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: B-Tree (Version 2)

;| Record

/ / 4, \ \ Pointer to child node

Figure 5. Records and children in version 2 B-tree nodes

Each record consists of the chunk coordinates in all dimensions, the chunk's offset in the file, and, if
filtered, the chunk size and filter exclusion mask. Each child node pointer also maintains the number of
immediate and total children below it. These counts allow the library to locate the n" record in the
structure in O(log N) time.

Leaf nodes only store records, which are identical to those stored in the internal nodes. The number of
records in a leaf node is identical to that stored in the internal nodes.

As in the version 1 case, B-tree nodes are created as needed when records are added to the container.
When a node is not large enough to contain a newly added value, the library first attempts to rebalance
the node by redistributing records to its siblings. If this is unsuccessful, the node is split into two nodes
at the same level and the links (and possibly other splits) are propagated up the tree as far as needed.
Nodes are allocated at their "full" size so they do not have to be resized and possibly moved as the
number of key-value pairs they contain grows. The depth of the tree only changes when the root node
splits. Unlike the version 1 B-trees no special handling of the root node takes place since the version 2 B-
tree includes a header that never changes location in the file.

9.3. Cache Objects, References, and Flush Dependencies

The version 2 B-tree has more complicated flush dependency issues than the version 1 B-tree due to the
requirement to maintain the child counts in the nodes. Since both the child offsets and these counts
must be correct for the set/get algorithms to succeed, there is no set of atomic write operations that
maintains a consistent B-tree on an insert that results in a node split or rebalance. To handle these
cases, the parents (all the way up to the header, which does not move in the file) are shadowed in the
cache and written separately to the file following the flush dependency rules for version 2 B-tree
keeping original B-tree nodes and leaves intact in the file. This allows any readers that are currently
inspecting the B-tree to always have a consistent view of the data structure. A shadow operation also
requires re-evaluating the flush dependencies due to the new node structure.

This shadowing has negative implications for SWMR as B-tree nodes will often be "duplicated" in the file
instead of overwritten, increasing its space usage. Note that the number of writes does NOT change,
however.

|.g: Page 19 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: B-Tree (Version 2)

Aside from this issue, the flush dependencies in a version 2 B-tree are straightforward: a flush
dependency only exists between each child node and its parent. In other words, the children must be
flushed to the disk before the updated parent node can be flushed. The header, internal, and leaf nodes
are represented as different types of cache objects.

Table 5. Parent-->Child flush dependencies between version 2 B-tree objects in the
metadata cache

Parent Child Reason

Header Root internal node Header stores offset of root
Internal node Internal or leaf node Node stores offsets of children
Internal and leaf nodes Chunk proxy Records store chunk offsets

]

h 4 v Y

| N
h 4 k
Leaf Nodes

Chunk Proxies

Internal Nodes

Chunk Proxies

Figure 6. Version 2 B-tree flush dependencies
Note that not all child nodes are shown to keep the figure uncluttered and that the base of the
arrow is the parent and the point is the child.

l.u: Page 20 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: Extensible Array

10. Chunk Index: Extensible Array

10.1. Purpose

The extensible array is used in the 1.10 version of the library as a chunk index for datasets with a single
unlimited dimension and any number of fixed-size dimensions. It is a variant of a deterministic skip list
and is optimized for appending along the dataset's unlimited dimension. The extensible array does not
exist in the 1.8 version of the library.

10.2. Layout and Operation

The idea behind the extensible array is that a particular data object can be located via a lightweight
indexing structure of fixed depth for a given address space. This indexing structure requires only a few
(2-3) file operations per element lookup and gives good cache performance. Unlike the B-tree structure,
the extensible array is optimized for appends. Where a B-tree would always add at the rightmost node
under these circumstances, either creating a deep tree (version 1) or requiring expensive rebalances to
correct (version 2), the extensible array has already mapped out a pre-balanced internal structure. This
idealized internal structure is instantiated as needed when chunk records are inserted into the structure.

On the disk, the extensible array consists of several components. These components are described in
the table below.

Table 6. Extensible array components

Component Comments

Header Each extensible array has a header, which contains bookkeeping
information about the array and stores the offset of the index
block. The element count is stored here as well.

Index Block The index block primarily serves as a dictionary into the internal
index nodes, called superblocks.

Data Block Pages Data block pages store the bulk of the data in an extensible array.

(Data Blocks) They are very simple and store the elements along with a small

amount of internal bookkeeping data. Data block pages are called
data blocks when accessed directly through the index block (see

below).
Superblocks The superblocks are the internal nodes of the extensible array.
Each superblock stores offsets into a set of data block pages.
Elements Each element in the array consists of the offset of the chunk in

the file and, if filtered, the chunk size and filter exclusion mask.

'.u: Page 21 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: Extensible Array

10.2.1. General Concept

The figure below shows the layout of the extensible array. In a 32-bit extensible array, the index block
contains 32 superblock offsets. The highest bit set in the index number determines which superblock
offset is used to find the data. This superblock will contain 2"-1 / 1024 data block page offsets, where n
is the pointer level. Any item in the array can be located in two deterministic steps.

10.2.2. Optimizations

e The first 4 superblocks store their elements directly in the index block. This saves two lookups
and significant space for very small datasets.

e The next 8 superblocks store their data block page pointers directly in the superblock. This saves
one lookup at the cost of a slightly larger index block. Instead of being called data block pages,
they are called data blocks.

Example:
To find element 12345 (not considering the optimizations):
1. The superblock is determined by looking at the highest bit set in 12345 (0b11000000111001),
which is 14, so the 14t superblock is loaded from the disk.
2. That superblock stores 8192 elements, which are spread across eight 1024-element data block
pages. The element is the 4153 element in this superblock, which is stored on the 5™ page.

The element was located deterministically in two steps requiring three 1/0O operations (load index block,
superblock, data block page) if none of the data structures were in the metadata cache. This is true for
all elements in the array, even the 4294967295™.

Superblocks

Elements

Superblock

Offsets Data Blocks Data Block Pages

Figure 7. Extensible array structure

l.u: Page 22 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: Extensible Array

10.3. Cache Objects, References, and Flush Dependencies

The extensible array has separate cache object types for each component part:
e header
e index block

superblocks

data blocks

data block pages

The flush dependencies that exist between the metadata cache objects are expressed graphically as
arrows in the figure below and are listed in the table below the figure. In each listed flush dependency,
the children must be flushed from the metadata cache before the parent to ensure readers do not
resolve an invalid file offset.

Index

G Superblocks

Data Blocks Data Block Pages

Chunk Proxies

Figure 8. Extensible array flush dependencies

The base of the arrow is the parent and the point is the child. The figure only shows chunk
proxies depending on the data block pages even though the index block and data blocks are also
parents to chunk proxies.

NOTE: Many of these file/cache objects include the offset of the header, but this is only intended for use
by file integrity and repair tools. These do not require an <object>-->header flush dependency since low-
level file analysis and reconstruction will not be compatible with SWMR.

l.u: Page 23 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: Extensible Array

Table 7. Parent-->Child flush dependencies between extensible array objects in the
metadata cache

Parent Child Reason

Header Index block Header stores file offset of index block

Index block Chunk proxies Index block stores file offset of a few chunks

Index block Data blocks Index block stores file offset of a few data
blocks

Index block Superblocks Index block stores file offset of superblocks

Superblock Data block page(s) Superblock stores file offset of data block
page(s)

Data block/page Chunk proxies Data block/page elements store file offset of
a chunk

|.u: Page 24 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: Fixed Array

11. Chunk Index: Fixed Array

NOTE: The flush dependencies and testing are currently not complete for this data structure in the
prototype.

11.1. Purpose

The fixed array is an on-disk data structure that represents a one-dimensional array containing a fixed
number of identically-sized elements. It is a simple data structure that offers fast lookups, a smaller total
size on disk, and does not require expensive maintenance operations such as relocating or splitting
nodes. It can only be used when the number of elements is fixed, will never change, and is known a
priori. Consequently, it is only used to index chunks in datasets where there are no unlimited
dimensions. The fixed array index that is created is large enough to index the dataset at the maximum
possible size. The dataset may be resized, although not outside of the maximum sizes for each
dimension that were stated at dataset creation, and the index's size and element-->chunk mapping
never changes.

The fixed array is only used in the 1.10 version of the library and does not exist in the 1.8 version.

11.2. Layout and Operation

The fixed array consists of a header and a data block. The header contains some basic information about
the data structure such as the number and size of the stored elements and the on-disk sizes of the fixed
array data objects. The contents of the data block may vary depending on the number of elements
stored in the array. Smaller arrays’ use a single, unpaged data block that directly stores the data
elements. Larger arrays use a paged data block composed of a "master" data block followed by multiple
data block pages for more efficient cache performance (each page is a separate metadata cache item).
The master data block object does not contain any elements. Instead, it contains a bitmap representing
which data block pages are "in use" and have been written to at least once®. The elements in large
arrays are stored in data block pages that are located contiguously after the master data block object.
Elements are offsets to the stored dataset chunks with a filter exclusion mask and the chunk size added
when filters are used.

” Smaller arrays are currently defined as those that store fewer than 1024 elements. This number can be changed
by customizing the fixed array's creation parameters. Note that "small" is currently defined as "number of
elements" and not "size in bytes." Also note that this parameter is not exposed outside of the library and is
unavailable to users.

® This allows the library to do lazy initialization of the pages in sparse arrays. It does not save disk space since the
total space for the array (data block + pages) is allocated at creation time.

|.u: Page 25 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: Fixed Array

Unpaged
Elements

., =EEEEEEEER

Header Data Block
Paged

Bitmap Elements

N, 1 [Sessss s EENEEEEE

Header DataBlock DataBlock Page 1 I__[)_a_t_a_é_lg)_cyaz_a_g-e_i_l Data Block Page 3 I

(Uninitialized)

Figure 9. Fixed array structures for smaller (unpaged) and larger (paged) arrays

11.3. Cache Objects, References, and Flush Dependencies

The fixed array is represented by three object types in the metadata cache: header, data block, and data
block pages. When used as a chunk index, chunk proxies must also be considered. These chunk proxies
are stubs that allow flush dependencies to be set up on chunk data. They ensure that flushed chunk
index objects will not refer to data that has not yet been flushed from the chunk cache.

The flush dependencies that exist between the metadata cache objects are listed in the table below and
expressed graphically as arrows in the figure below the table. In each listed flush dependency, the
children must be flushed from the metadata cache before the parent to ensure readers do not resolve
an invalid file offset.

NOTE: The fixed array data block also includes the offset of the header, but the offset of the header is
only intended for use by file integrity and repair tools. This does not require a data block-->header flush

dependency since low-level file analysis and reconstruction will not be compatible with SWMR.

Table 8. Parent-->Child flush dependencies between fixed array objects in the metadata

cache

Parent Child Reason

Header Data block The header stores the file offset of data

block.

Data block (paged) Data block page (used The bitmap in the data block indicates in-
for first time) use/valid data block pages.

Data block (unpaged) Chunk proxy Data block/page elements store the file

or offset of a chunk.

Data block page (paged)

l.u: Page 26 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Chunk Index: Fixed Array

Unpaged

Data Block

Header

Chunk Proxies

Paged

Data Block Pages

Data Block

Header

Chunk Proxies

Figure 10. Flush dependencies between fixed array metadata cache objects for both unpaged
(smaller) and paged (larger) fixed arrays
The base of the arrow is the parent and the point is the child.

l.T Page 27 of 28

The HDF Group

HDF5 Single-Writer/Multiple-Reader Feature Design and Semantics Revision History

12. Revision History

June 5, 2013 Version 1 created from prior individual data structure documents.

June 14, 2013 Version 2 added figures, introduction, major text changes. Intro part is very
rough and unfinished.

June 25, 2013 Version 3 incorporated feedback from Quincey and Neil.

June 26, 2013 Version 4 rewrote the introduction.

June 30, 2013 Version 5 tidied the figure/table captions and a little cleanup, sent to the
customer.

August 8, 2013 Version 5.1. More editing and formatting.

October 10, 2013 Version 5.2. More editing and formatting.

'.u: Page 28 of 28

The HDF Group

