February 10, 2016 RFC THG 2015-04-23.v2

RFC: Enabling Collective Metadata Reads

Mohamad Chaarawi
Quincey Koziol

HDF5 uses a metadata cache internally for fast metadata access. Parallel HDF5 uses
the metadata cache in the same way but with a requirement of having the same
stream of dirty metadata from all MPI ranks. This means that all operations that
modify metadata in the file are required to be collective. On the other hand,
operations that read metadata from the file are treated as independent operations
because they are allowed to be independent. On a cache miss, this will result in a small
read from the file system.

It is quite common in HPC applications, although not always, that reading metadata is
done collectively. For example, all processes opening groups or datasets to access
them. This would result in small reads requests from all MPI ranks to the file system,
reading the same data. This is obviously bad, since file systems perform horribly with
such access patterns. This RFC proposes a new feature for users to tell the HDF5 library
that all or certain metadata read operations are collective, which would allow the
library to perform optimizations when reading the data on cache misses, by having one
rank read the data and broadcasting it to all other ranks.

1 Introduction

The HDF5 metadata cache is a very important component of the library that enables fast access to file
metadata instead of issuing multiple small accesses to the file system. Parallel HDF5 uses the same
cache on every MPI process with some restrictions. The most important one being that all
modifications to the file metadata have to be done collectively on all ranks. For more information
about the metadata cache and requirements, consult the metadata cache user guide [1]. Writing
metadata in HDF5 results from operations that modify the file structure, creating new objects,
extending datasets, etc... Reading metadata results from operations such as opening the file and
objects in that file, iterating through the file hierarchy, reading attributes, etc...

Reading HDF5 metadata does not modify the file and does not dirty any entries in the metadata
cache. Thus, in Parallel HDF5, APl operations that result in metadata reads are not required to be
collective. Several applications take advantage of that fact for accessing different parts of the file on
different MPI ranks. However, at the same time, many other HPC applications open the same objects
or traverse the same file path to access data at a particular point. For example a very common use
case in HPC applications is for all ranks to open a dataset at a particular location in the file and
collectively read or write data to the dataset. This means that all ranks treat the API operation for
opening a dataset collectively. At the moment, the HDF5 library treats all such operations as

FT Page 1 of 6

The HDF Group



February 10, 2016 RFC THG 2015-04-23.v2

independent operations, since they could very well be. This RFC proposes to add a new feature that
lets users specify if a certain (or all) operations on the file are independent or collective.

2 Motivation & Approach

Applications that read a lot of metadata collectively will most probably see a big performance hit
since the HDFS5 library treats those reads as independent. This means that all ranks will independently
read the same small data entries from the file system on a cache miss. These reads typically range
from tens to hundreds of Bytes. Typical parallel file systems such as GPFS perform horribly with such
an access pattern from all ranks.

The above scenario can be avoided with a very simple optimization by having one rank issue the read
for a metadata entry to the file system and broadcast the data corresponding to the metadata cache
entry to all other ranks. This would work if all the ranks are there to issue the corresponding
broadcast operation. Adding a hint to the HDF5 library to indicate that an operation is executed
collectively by the user would give the HDFS5 library information that it can do such an optimization.

Applying the simple optimization we described above to the metadata cache is not as simple as it
sounds, and a lot of infrastructure needs to be added to support this. More information about
technical challenges of implementing this in the library is detailed in Section 3 for those who are
familiar with the HDF5 metadata cache implementation.

2.1 New Property List Functions

The hint to the HDFS5 library is passed from applications using a property on access property list.
If the property to access metadata collectively is set to true on a file access property list that is used
in creating or opening a file, then the HDF5 library will assume that all metadata read APl operations
issued on that file handle are going to be issued collectively from all ranks. Alternatively, users may
wish to avoid setting that property globally on the file access property list, and individually set it on
access property lists (dataset, group, link, datatype, attribute access property lists) for certain API
operations. This will indicate that only the operation issued with the access property list is going to be
called collectively.

The new routines for setting/getting the new property are:
herr_t H5Pset_all_coll_metadata_ops (hid_t plist_id, hbool_t is_collective);
herr_t H5Pget_ all_coll_metadata_ops (hid_t plist_id, hbool_t *is_collective);

Where plist_id is the access property list and is_collective is the value to turn on the optimization (set
to 1) or turn it off (set to 0). The default is off, meaning operations are assumed to be independent.

2.2 Current HDF5 API Limitations

Some HDF5 API functions that read metadata from the cache and/or file system do not take any
kind of access property list. This means that the property to indicate whether the library should do
the metadata read optimization cannot be passed from the application through those functions
individually but can be done on the file access property as a global hint for all functions. In future
versions of HDF5, we should add a new version of those API routines adding an access property list.

The API routines that need a new version with an access property list added are:

|.g: Page 2 of 6

The HDF Group




February 10, 2016

RFC THG 2015-04-23.v2

H5Awrite()
H5Aread()
H5Arename()
HS5Aiterate2()
H5Adelete()
H5Aexists()

H5Dget_space_status()

H5Dget_storage_size()

H5Dset_extent()

H5Ddebug()

H5Dclose()

H5Dget_get_create_plist()

H5Dget_space() (when the dataset is a virtual dataset)

H5Gget_create_plist()
H5Gget_info()
H5Gclose()

H5Literate()
H5Lvisit()

H5Rcreate()

H5Rdereference2() (If the referenace is an object reference)
H5Rget_region()

H5Rget_obj_type2()

H5Rget_name()

H50copy()
H50o0pen_by_addr()
H50incr_refcount()
H50decr_refcount()
H50get_info()
H50set_comment()
H50visit()

H5Fis_hdf5()
H5Fflush()
H5Fclose()
H5Fget_file_image()
H5Freopen()

2.5

The HDF Group

Page 3 of 6



February 10, 2016 RFC THG 2015-04-23.v2

H5Fget_freespace()
H5Fget_info2()
H5Fget_free_sections()
H5Fmount()
H5Funmount()

H5lget_name()

H5Tget_create_plist()
H5Tclose()

H5Zunregister()
most deprecated routines

3 Implementation and Challenges

Note to readers: You must be familiar with the metadata cache V3 implementation to understand all
the parts in this section.

Implementing the new optimization isn’t a straightforward task. For example, checking if the property
is set and simply doing a read from rank 0 and MPI_Bcast to other ranks won’t work for the following
reasons:

1) The caches on all the ranks contain the same list of dirty metadata entries. Clean metadata
entries are not required to be the same on all ranks. The reason is that some metadata read
operations could be done independently on some ranks. So consider for example in a
collective read operation, rank O request access to cache entry X that is not in its cache but
rank 1 has it in its cache as a clean entry. This means that rank 0 will read the entry from disk
and bcast it to all ranks, but rank 1 won’t enter that bcast because it sees that it has the entry
in its cache, resulting in an application hang in the MPI_Bcast() operation.

2) Chunked dataset access, while it can be done independently or collectively, needs to access
entries in the metadata cache independently for the chunks requested to be accessed by
some processes. Since it is very unlikely that applications will issue collective access to the
same pieces of raw data on 2 or more ranks, this means that even if we set the global hint on
all operations on the file to be collective, there are some metadata read operations (chunk
address lookups) that are required to be independent.

To address the above issues, some modifications were required to the internal cache implementation
to support the collective metadata read optimization.

Each cache entry will be marked as accessed collectively or not. Once an item has been accessed
collectively and marked so, it is added to a new LRU in the cache that holds previously collectively
accessed entries. The collective LRU has the following two requirements that have to be maintained
at any given point in time:

I'T Page 4 of 6

The HDF Group



February 10, 2016 RFC THG 2015-04-23.v2

1) The number of entries on all ranks should be the same
2) The order of all entries in the LRU list should be the same on all ranks.

An entry marked collective can’t be unmarked or evicted from the cache independently by any rank.
Furthermore, if a rank independently accesses an entry in the collective LRU list, its order is not
changed in the LRU list. Only if the access is collective, the entry is moved to the top of the LRU.

On a cache sync point, where all processes collectively get together to clean entries in the cache and
possibly evict some, all ranks will unmark the bottom half of the collective entries in the collective
LRU list an remove them from the list. Note that this does not evict those entries from the cache, but
will allow them to be evicted by the normal cache replacement policy. The sync point however is not
triggered in read only scenarios, where there are not dirty entries in the cache. In this case, we check
on every protect operation on entry if it is done collectively. If yes, then we compare the total byte
size of the collective entries in the collective LRU to the maximum cache size. If the collective entries
grow up to a certain threshold point from the maximum cache size, we clear the bottom half of the
collective LRU and mark those entries as independent and allow them to be flushed. The threshold
now depends on the global collective metadata read setting on the entire file:

* If the application indicates that all operations on the file metadata are collective, we allow the
collective metadata entries to grow to 80% of the cache size.

* Otherwise we allow them to grow to 40% of the cache size.

With the above changes in place, we can now proceed to implement the optimization itself. On a
protect call to read a metadata entry, all ranks check if the read is done collectively. If it is not, the
original behavior does not change. If yes, each process checks whether the entry is in its cache. The
following scenarios are possible:

* Theentryisin the cache and is marked as collective. In that case, no more work is needed
since all processes will have it in the cache since it is marked as collective.

* Theentryisin the cache, it is clean, but is not marked as collective. This means that other
ranks might not have the entry in the cache. The broadcast operation is issued on all ranks
including the ones that have the entry in their cache. Process with rank 0 is responsible for
reading the entry from disk if it is not in its cache and broadcasting the entry to all the ranks.

* The entryisin the cache and is dirty. This means that all processes will have in its cache. If it is
not marked as collective, we mark it as so and we insert it in the collective LRU.

4 Recommendation

Reading the same data by all ranks is definitely a bad approach when it can be avoided since the
network is a much faster means for sharing the data from 1 rank. This RFC aims to address that
limitation in HDF5 by allowing application users to pass a hint to the HDF5 library that all or specific
read operations on the file are collective. The HDF5 library would have 1 rank read the data and
broadcast it to all ranks to avoid burdening the file system.

The changes to support this feature were implemented on the metadata cache merge branch where
the new Version 3 of the metadata cache has been developed.

FT Page 5 of 6

The HDF Group



February 10, 2016 RFC THG 2015-04-23.v2

Revision History

May 15, 2015: Version 1 circulated for comment within The HDF Group.
February 10, 2016: Version 2 describes updated read operation functions.
[References]

[1] Metadata Caching in HDF5: http://hdfgroup.org/HDF5/doc/Advanced/MetadataCache/index.html

FT Page 6 of 6

The HDF Group



